
Clinical Implications of Clonal Hematopoiesis

Mary T Brophy MD, MPH VA Boston Healthcare System Co-Director MAVERIC Assistant Professor, Boston University School of Medicine

Disclosures

• None

5th edition of the WHO (2022)

Myeloid precursor lesions added to WHO 2022, CHIP and CCUS formally defined

Clonal Hematopoiesis of Indeterminate Potential

- (WHO) Classification defined CHIP as the presence of a somatic mutation associated with myeloid neoplasia detected in the peripheral blood or bone marrow with a VAF ≥ 2% in the absence of definitive morphologic evidence of a hematologic disorder
 - Dominate mutations: TP53, TET2, DNMT3A, ASXL1, JAK2
- Prevalence of CH increases with age 10%-15% of 60 to 70 years of age
 - With a VAF of ≥0.01% the prevalence of CH to be nearly ubiquitous in persons >50 years of age
- CH is 5 to 10 times higher in patients who have received cytotoxic chemotherapy or ionizing radiation
- CHIP is associated with decreased overall survival, increased risk for a hematologic malignancy, and cardiovascular complications, compared with age-matched individuals without CHIP
 - Increase mortality occurred in those 70 +years old, not younger individuals
 - Excessive mortality is driven by cardiovascular events rather than hematologic neoplasms

CHIP and Hematologic Malignancies

- CHIP is associated with an increased risk of transformation to myeloid neoplasms
- Only a small fractions of individuals with CHIP will develop hematologic malignancies
 - Risk of evolution to AML is estimate at 0.5% to 1% per year
 - Prevalence in 70year-olds is 100-fold greater than prevalence or MDS or leukemia
- Risk factors for developing myeloid malignancies
 - Age 65 years or greater
 - High-risk mutations (SF3B1, SRSF2, ZRSR2, JAK2, TP53, RUNX1, FLT3, IDH1, or IDH2).
 - VAF ≥20 percent
 - ≥2 distinct mutations
 - Cytopenias
 - RBC indices (RDW \geq 15 percent or MCV >100 fL)

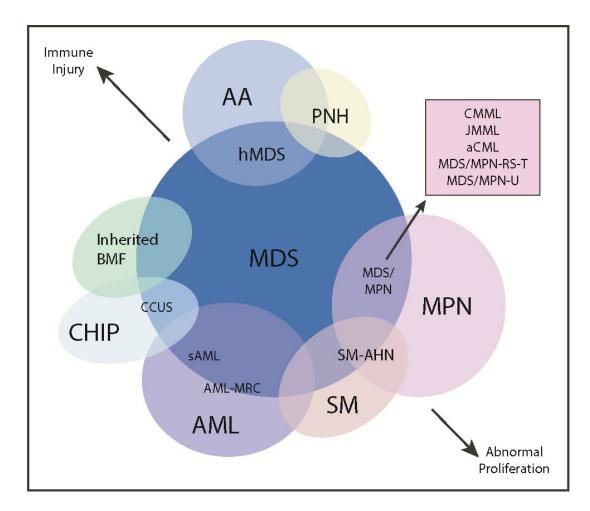
Steensma DP, Beja R, Jaiswal S, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndrome. Blood 2015;126:9 Libby P, Sidlow R Lin AE, et al. Clonal hematopoiesis: crossroads of aging cardiovascular disease , and cancer. J Am Coll Cardiol 2019;74:567 Bejar R. CHIP, ICUS, CCUS and other 4 letter words. Leukemia 2017;31:1869

Clonal Hematopoiesis Risk Score (CHRS)						
Prognostic Variable	0.5	1	1.5	2	2.5	
Single DNMT3A	present	absent		-	-	
High Risk Mutation	-	absent	-	-	present	
Mutation Number	-	1	-	≥2	-	
Variant Allele Fraction	-	< 0.2	-	>0.2	-	
Red Cell Distribution Width	-	< 15	-	-	≥15	
Mean Corpuscular Volume	-	< 100	-	-	> 100	
Cytopenia	-	CHIP	CCUS	-	-	
Age	-	< 65y	≥ 65y	-	-	

Risk	% of patients	% 10yr survival
Low	88.4%	93.7%
Intermediate	10.5%	84.0%
High	1.1%	51.2%

Risk-Stratification Model to Predict Progression of MGUS to MM or Related Disorders

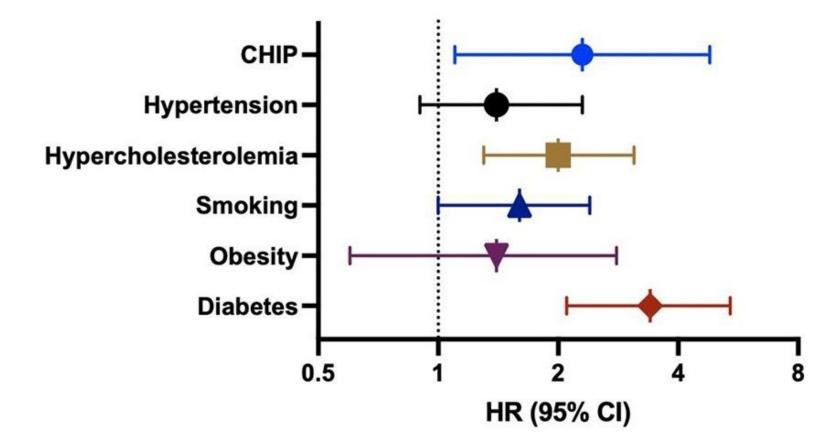
	•	•
1	5	2
-	21	10
10.1	37	18
20.8	58	27
		Progression (20 Years), % 1 5 5.4 21 10.1 37


MGUS

- Prevalence in general population
 - >50year 3.4%, >70year 5.3%, >80year 7.5%
- Mean age of dectection 70 years
- Only 1% of patients go on to develop myeloma in a year
- Lifetime risk of progression ~10%
- Virtually all malignant plasma cell dyscrasias are preceded by MGUS
- Median survival of individuals only slightly shorter than that of age-matched controls

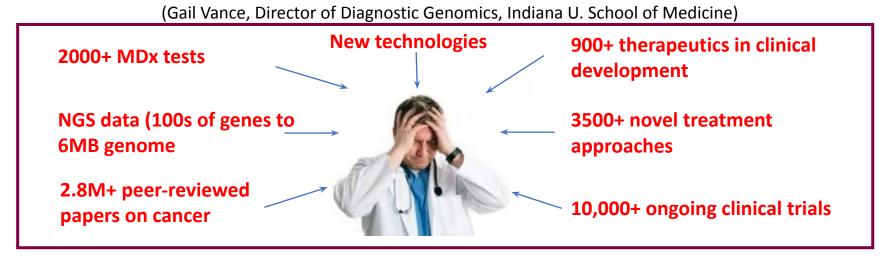
Monitoring

- Screening is not recommended
- No prospective studies to proven the benefits of monitoring
- Observational studies of population-based cohorts with MGUS
 - associated with improved survival and less morbidity in those who progress to myeloma
 - Unclear whether this benefit was due to earlier detection and initiation of treatment or lead-time bias.


MDS overlap disorders and diagnostic boundaries

Tiffany N. Tanaka, Rafael Bejar, MDS overlap disorders and diagnostic boundaries, Blood, 2019,

Adjusted HR for incident CHD among Jackson Heart Study & FUSION participants


Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease. N Engl J Med. 2017 Jul 13;377(2):111-121

Clonal hematopoiesis of indeterminate potential (CHIP): Linking somatic mutations, hematopoiesis, chronic inflammation and cardiovascular disease. J Mol Cell Cardiol. 2021 Dec;161:98-105.

Clinical Interpretation – The Next Bottleneck

A major goal of cancer genomics is identifying "actionable" mutations that drive a tumor and can be targeted with available therapy **BUT**...

"Then you have a 5-inch-thick set of papers on your desk for the bioinformatics.

That's where the cost is."

- Ever-increasing amount of data growing complexity for physicians & patients to process
 - NGS data MDx & pathology results Growing body of cancer & biomarker literature New targeted therapies Combination therapy Clinical Trials
- Physicians will need greater information on the appropriate integration of molecular testing into treatment decision making.

Thanks

Hello, here is my tumor sequence